) ’ Productivel!“!!

Pain-Free COM+ Events
With Helper Objects

Use the COM+ events helper
objects to transform your
interaction with the COM+
catalog from a nightmare to a joy.

L oosely coupled events (LCE) is an exciting new

service introduced by COM+, and it has evolved
to address classic COM problems of notifying and
receiving events. LCE provides additional capabilities
such as transaction support, security, asynchronous
publishing, and asynchronous event delivery.

The COM+ Component Services Explorer pro-
vides easy visual administration for some of the LCE
features, such as setting up persistent subscribers and
adding a new event class. But important LCE features
such as adding or removing a transient subscription,
implementing, adding, and removing a publisher fil-
ter, and transient subscriptions filtering are only avail-
able programmatically.

The developer is required to program against a
cumbersome set of COM dual interfaces exposed by
the COM+ Explorer called the catalog interfaces. The
catalog interfaces have many limitations. For one, they
are not type-safe. ABSTR is used instead of a “normal”
string, and it represents GUID, IID, and CLSID.
Properties values are packaged in amorphous variants.
Another limitation is that the COM+ interfaces and
the underlying programming model and objects hier-
archy require a lot of generic code for iterating over the
catalog, even for simple tasks. Finally, the resulting
code is tedious and error-prone.

This article presents you with an easy-to-use helper
object that wraps the COM+ catalog, saving you the
agony of programming directly against the catalog.
This reduces hundreds of lines of code into a mere
line or two.

42 | VISUAL C++ DEVELOPERS JOURNAL JANUARY 2001 | www.vcdj.com

by Juval Lowy

Windows 2000
Visual C++ 6.0
Microsoft Platform SDK

The wrapper COM object encapsulates the catalog
objects and interfaces, and instead exposes simple
custom interfaces (with type safety) that do all the
hard work (see Figure 1). The interfaces are your one-
stop-shop for easy transient subscriptions manage-
ment and publisher filtering, providing you with the
same functionality as the catalog interfaces with a
fraction of the code.

I will also give you a generic implementation of a
publisher filter you can use to implement your own
publisher filtering. You provide the filtering logic, and
the generic filter provides all the required plumbing
and interaction with the COM+ catalog.

Note that this article assumes you are familiar with
the basic concepts of COM+ events such as event
classes, publishing events, persistent subscribers, tran-
sient subscribers, and publisher-side filtering. See the
Resources box for articles that cover the basics of
COM:+ events. If you are unfamiliar with these terms,
I recommend you read those articles first to take full
advantage of this article.

Transient subscriptions are essential to COM+
events, and they are the only way an existing object (a
component instance) can receive COM+ events. Like
a persistent subscriber, the object must implement
interfaces it wants to receive the events on (these
interfaces are sometimes called “sink” interfaces). The
transient subscriber can choose to subscribe to all the
events a particular event class can publish, to a particu-
lar interface supported by the event class, or even to a
particular method on a particular interface.

The transient subscription must be registered with
the COM+ catalog and removed from it when the
object wants to unsubscribe. Here’s how you register
a transient subscription:

Create the catalog object CLSID_COMAdmin-
Catalog and get a pointer to ICOMAdminCatalog.
CallICOMAdminCatalog;::GetCollection() to retrieve
a collection called “TransientSubscription” and re-
trieve the ICatalogCollection interface pointer. Call
ICatalogCollection::Add() to get ICatalogObject. Call
ICatalogObject::put_Value() to set the desired tran-
sient subscription properties, such as the event class to
subscribe to, subscribing interfaces, the subscription
name, and whether the subscription should be en-
abled. Call ICatalogCollection::SaveChanges(). Fi-
nally, release everything.

You are required to perform a similar sequence to
remove the transient subscription. The catalog wrap-
per encapsulates the tedious code required for register-
ing a transient subscription by exposing the interface
ITransientSubscription, which allows you to sub-
scribe easily to all the interfaces of a specified event
class or to a particular interface on that class:
interface ITransientSubscription : IUnknown
{

HRESULT Add([in,string]LPCWSTR pwzName,
[in]CLSID clsidEventClass,
[in]REFIID jidInterface,
[in]IUnknown *pSink);
HRESULT Remove([in,string]LPCWSTR pwzName);
HRESULT AddFilter([in,string]LPCWSTR pwzSubName,
[in,string]LPCWSTR pwzCriteria);
HRESULT RemoveFilter([in,string]LPCWSTR pwzSubName);

You create the catalog wrapper using the class ID
CLSID_CatalogWrapper (download Listing 1 from
the VCD] Web site; see the Go Online box for details).
When you add a'subscription, you provide the catalog
wrapper with the subscription name: a string identify-
ing the subscription. The name identifies the subscrip-
tion when you want to remove it later or associate a
filter with it.

The two other methods of ITransientSubscription
let you easily install a subscriber-side filter for your
transient subscription.

Subscriber-Side Filtering:

What's it Good For?

Not all subscribers perform meaningful operations in
response to every published event. For example, you
might want to take action only when your favorite

stock is trading, or maybe only when it is
trading above a certain mark.

One possible course of action is to accept
the event, examine the parameters, and then
decide whether to process or discard the event.
This process is inefficient, however, when the
subscriber is not interested in the event because
it forces a context switch to allow the subscriber
to examine the event and requires redundant
network round trips. You would also have to
write extra examination code that can’t intro-
duce defects, bugs, and additional testing.
Event examination and processing policies
will likely change over time and between cus-
tomers; you'll end up chasing your tail trying to
satisfy all your customers.

Here’s a better idea: Place the filtering logic
outside the subscriber’s scope. The filtering
logic should be configurable administratively,
potentially different for each customer site.
This is exactly what a COM+ subscriber-side
filter provides (see Figure 2).

For example, if you subscribe to an event that
notifies you when a new user is added to your portfolio
management system and the method signature is:

HRESULT OnNewUser([in]BSTRbstrName,
[in]BSTR bstrStatus);

you can specify filtering criteria such as:

bstrName = "Bi1l Gates" AND bstrStatus = "Rich"

The event is delivered to your object only when the user

name is “Bill Gates” and his current status is “Rich.”
Currently, the filtering criteria only filters string

values. The filter criteria string recognizes relational

THE CATALDOG WRAPPER DOBJECT

ITransientSubscription

i

3 Catalog Wmhper
Ll i IFilterInstaller

Figure 1 | The catalog wrapper helper object exposes two
easy-to-use interfaces (with type safety) that encapsulate
the details of interacting with the COM+ catalog. Clients
who use these objects will have elegant, concise, and low-
maintenance code.

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL JANUARY 2001 | 43

PRODUCTIVE COM+

Productive Hee]YER

SUBSCRIBER-SIDE FILTERING IN ACTION

Event Class

Figure 2 | Subscribers who want to be notified only when an event meets a certain criteria—not when every event is published to them—
can specify filtering criteria. The filter will affect only that subscriber, and allows the separation of event filtering from event handling.

operators for checking equality (= =, =), nested parentheses,
and the logical keywords AND, OR, and NOT.

COM:+ evaluates the expression and makes the call only
when the criteria is true. Be aware that if you include the wrong
parameters, introduce spelling errors or typos, or change the
parameter names, the subscriber will never be notified.

Specifying a subscriber filter administratively is available
only for persistent subscribers. To do this, display the persis-
tent subscription properties, select the Options tab, and
specify the Filter criteria. Transient subscribers must program
against the catalog to seta transient subscription filter criteria,
following similar steps to those used when registering a
transient subscription. The catalog wrapper ITransientSub-
scription interface allows you to add a subscriber-side filter to
a transient subscription with the AddFilter() and Remove-
Filter() methods. The methods accept the subscription name
and a filtering string. For example:

LPCWSTR pwzCriteria = L"bstrUser = \"BillGates\"";
pTransientSubscription->AddFilter(L"MySubs",pwzCriteria);

Manage the Publisher-Side Filter

Publisher filtering is a powerful mechanism that gives the
publisher fine-grained control of events delivery. You can use
afilter to choose not to publish to certain subscribers, control
the order in which the subscribers get the event, and find out
which subscriber did not receive the event. The publisher-side
filter intercepts the publisher’s call on the event class, applies
filtering logic on it, and publishes accordingly (see Figure 3).
Ifyou associate a filter with an event class, all events published
using this class go through the filter first.

A publisher-side filter class ID is stored in the COM+
catalog as a property of the event class it filters. When a
publisher fires events on the event class, COM+ creates the
publisher object behind the scenes and lets it perform the
filtering. The bad news is that in order to install the filter, you
must program it against the COM+ catalog.

Here’s how you add a publisher filter to a particular
event class:

Create the catalog object using CLSID_COMAdmin-
Catalog and get a pointer to ICOMAdminCatalog. Then get

44 | VISUAL C++ DEVELOPERS JOURNAL JANUARY 2001 | www.vcdj.com

the applications collection. Next, call ICOMAdminCatalog::
GetCollection() to retrieve a collection called “Applications”
and get back the ICatalogCollection interface pointer. The
Application collection allows you to iterate over all your
machine’s applications. Each application is represented by an
ICatalogObject interface.

For each application in the collection, you then get the
components collection, iterate through it, and look for the
event class. If not found, get the next application collection
and scan its components collection. Once you find the event
class, set its MultilnterfacePublisherFilterCLSID property to
the filter’s CLSID. Finally, save the changes on the compo-
nents collection and release everything.

The good news is that the helper class implements an
interface called IFilterInstaller, defined as:
interface IFilterInstaller : IUnknown
il

HRESULT Install([in]CLSID clsidEventClass,
[in]CLSID clsidFilter);
HRESULT Remove ([in]CLSID clsidEventClass);
1

IFilterInstaller makes adding a filter a breeze. You just specify
the class ID of the event class and the filter, and IFilterInstaller
does the rest. It’s as simple as this one line:

pFilterInstaller->Install(CLSID_MyEventClass,
CLSID_MyFilter);

Note that you do not need to specify the application name as
a parameter, just the event class and the filter CLSID. And
because an event class can be associated with only one filter at
a time, installing a new filter will override the existing one.
Use IFilterInstaller::Remove() to remove any filter associated
with a specified event class.

Implement a Publisher-Side Filter

The next step to making the COM+ events system more
palatable is simplifying the implementation of the filter class
itself; in particular, making a filter that controls which

subscriber receives the event.

Implementing a publisher filter has two facets—the event
publishing interception and the filtering logic. The intercep-
tion requires intimate knowledge of the COM+eventsystem’s

mechanics. The filter class must follow these “easy,” “well-
documented” steps:

Implement the interface IMultilnterfacePublisherFilter that
affects all interfaces on the event class you are filtering; COM +
calls this interface when the filter is created and every time an
eventis fired. Cachea pointerto IMultilnterfaceEventControl,
which COM+ handed to you. Prepare an initial filtering
criteria, and call IMultiInterfaceEventControl::GetSub-
scriptions() to getan IEventObjectCollection pointer (actually
points to subscribers). From the collection, get an enumerator
over the event objects—IEnumEventObject—and release the
collection. Iterate using IEnumEventObject over the sub-
scriber list and get one subscriber interface at a time
(IEventSubscription). Extract the subscriber data from
IEventSubscription (such as name, description, and IID).
Apply filtering logic and decide whether you want to publish
to that subscriber. If you want to fire at a particular sub-
scriber, use a pointer to IFiringControl that COM+ handed to
you and call IFiringControl::FireSubscription(), passing in
an IEventSubscription pointer to that subscriber. Release the
current subscriber and continue to iterate. Finally, release
the enumerator.

Luckily, the intercepting plumbing is generic enough that
Iwas able to implementall of itinan ATL COM object called
CGenericFilter, which doesall the messy interaction with the
COMz+ event system required of a publisher filter. All you
have to do is provide the filtering logic.

As part of this article’s files available for download, you
will find the Filter project. The application /domain specific
filtering logic is in a dedicated CPP file called “Domain
Specific.CPP,” which contains two simple helper methods
you should implement to provide your own filtering logic:
CGenericFilter::ShouldFire() and CGenericFilter::GetCri-
teria() (download Listing 2).

CGenericFilter calls GetCriteria() once per event to deter-
mine what subscribers consider for filtering. For example,

you can set up initial criteria for publishing only to subscribers
that have subscribed to this particular event class. You would
do so by providing a criteria in the form of:

EventClassID = {66D88CB1-51D4-4396-B5D4-80BIFAC3077}.

The filtering criteria is nothing more than an advanced
optimization, and the default implementation of CGen-
ericFilter returns “All.”

ShouldFire() is the interesting method. CGenericFilter
calls it once per subscriber for a particular event, passing in
a custom struct of type SubscriptionData as a parameter.
This custom struct contains every available bit of informa-
tion about the subscriber: the name, description, machine
name, and so on. You examine the subscriber and return
TRUE if you want to publish to this subscriber, FALSE for
everything else. The default CGenericFilter implementa-
tion provides a simple example of filtering logic. It returns
TRUE from ShouldFire() only for subscribers whose de-
scription field says “Paid Extra.”

About the Author

Juval Lowy is a seasoned software architect. He spends his time
publishing and conducting training classes and conference talks on
object-oriented design and COM/COM+. He was an early adopter of
COM, and has unique experience in COM design. He is also author of
an up-and-coming book on COM+ and .NET (O'Reilly). E-mail him at
idesign@componentware.net.

Use these DevX Locator+ codes at www. vcdj.com to go
directly to these related resources. '

V€0101 Download all the code for this issue of VCDJ.
VC0101PC Download the code for this article separately. This

article’s code includes help files, a test harness, and asamp
application containing the generic filter class. ; ‘
VC0101PC_T Read this article onlme DevX Premier Club
membership is required. ' , :
Want to subscribe to the Premier Club'-' Go to
www.devx.com. 1

PUBLISHER FILTERING

; Event Class |

Figure 3 | A publisher filter is an object that intercepts the event firing using the event class, applies filtering logic on it, and publishes
accordingly. For example, the filter can decide which subscriber gets the event. The filter affects all subscribers to that event class. This

gives the publisher fine-grained control over events delivery.

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL JANUARY 2001 | 45

PRODUCTIVE COM+

